Cluster and Mini Cluster Tree Elimination

CTEf and MCTEf

Function Filtering

A Filtering Tree decomposition

IMCTE

Conclusions

- Main idea: Delete tuples that will become inconsistent in the future.
- Filtering is a way of using other functions of other clusters, parts of functions of other clusters, sums and approximations of functions of other clusters.
- So is a way of going behind the "exactly one" imposition of the tree decomposition definition.
- Allows to use Upper Bounds and Lower Bounds to delete tuples.
- An elegant extension IMCTE uses the messages computed in previous iterations to delete tuples.
- Memory storage is reduced significantly.

Search

- Main step: guessing
- Bottleneck: exponential search tree traversal
- Time Complexity: \(O(d^k)\)
- Space Complexity: \(O(n, d)\)
- Average Time Complexity: better than worst case

Inference

- Main step: message passing
- Bottleneck: memory storage
- Time Complexity: \(O(v, \exp(w))\) \(v =\) tree width
- Space Complexity: \(O(v, \exp(w))\)
- Average Space Complexity: close to worst

WCP and Valuation Structures

Definition 1 A valuation structure \(S(k) = \{(x_1, \ldots, x_k, \emptyset)\}\) where:

- \(k \in \{1, \ldots, \infty\}\)
- \(x \uplus b = \min\{x, a + b\}\), and
- \(\emptyset\) is the standard order among naturals.

Definition 2 A Weighted CSP (WCP) is \((X, D, C, S)\) where:

- \(X = \{x_1, \ldots, x_k\}\)
- \(D = \{D_1, \ldots, D_k\}\)
- \(C\) is a finite set of cost functions:
- \(C\) is the standard order among naturals.

Property 1

\[f(t) = \begin{cases} \emptyset & \text{if } t \text{ is allowed} \\ \emptyset \cup \{b(t)\} & \text{if } t \text{ is partially allowed} \\ \emptyset & \text{if } t \text{ is totally forbidden} \\ \end{cases} \]

Property 2

\[f(t) = \emptyset \cup \{b(t)\} \]

CTE and MCTEf

- CTE solves WCP by sending mgs \(m(u, v)\) along the edges of a tree decomposition.
- CTE time and space complexity are \(O(v, \exp(w))\).
- \(\text{MCTEf}(e)\) approximates CTE limiting the arity: \(M(u, v) \leq m(u, v)\)

IMCPE

- \(\phi(u, v) = \mathcal{M}(u, v)\) the approximated IMCE message of a previous execution (one with minor \(r\))

Experiments

1. **MCTEf** sends \(m(u, v)\) with functions in \(\phi(u, v)\).

IMCPE

- **Operation on Functions**

IMCPE

- **Procedure IMCPE\((X, D, C, S)\)**

Experiments

1. Showing that CTE versus state of the art CTE use less tuples to find the exact solution.
2. Inside an approximation schema we show that MCTEf\((e)\) reduces resources at a smaller \(r\) and finds worst LB than the iterative version IMCE where the previous messages of MCTEf\((e)\) execution are used as filters.